mirror of
https://github.com/PrivSec-dev/privsec.dev
synced 2025-02-20 18:31:35 -05:00
More cleanup
Signed-off-by: friendly-rabbit-35 <169707731+friendly-rabbit-35@users.noreply.github.com>
This commit is contained in:
parent
a17dd2bf70
commit
126893117c
@ -13,16 +13,16 @@ The first task a person should do when taking steps to protect their privacy and
|
||||
|
||||
To make a threat model, we must first define a threat. A common mistake made by people who are just getting into the privacy space is to define the threat as "big-tech companies." There is a fundamental problem with this definition:
|
||||
|
||||
Why are we not trusting "big-tech companies," but then shift our trust to "small-tech companies"? What happens if those "small-tech companies" turn out to be malicious? What happens when our favorite "small-tech company" becomes successful and grow exponentially? **The proper way to define the threat here is the "service provider," not "big-tech."**
|
||||
Why are we not trusting "big-tech companies," but then shifting our trust to "small-tech companies"? What happens if those "small-tech companies" turn out to be malicious? What happens when our favorite "small-tech company" becomes successful and grows exponentially? **The proper way to define the threat here is the "service provider," not "big-tech."**
|
||||
|
||||
Generally, there are four primary threats a person would want to protect themselves from:
|
||||
|
||||
- A service provider spying their users
|
||||
- Cross site/service tracking and data sharing, a.k.a. "mass surveillance"
|
||||
- An app developer spying on users through their malicious software
|
||||
- A hacker trying to get into the users' computers
|
||||
- A hacker trying to get into users' computers
|
||||
|
||||
A typical person would have several of these threats in their threat model. Some of these threats may weigh more than others. For example, a software developer would have a hacker stealing their source code, signing keys and secrets as their primary threat, but beyond that they would also want privacy from the websites they visit and so on. Likewise, an average Joe may have their primary threat as mass surveillance and service providers, but beyond that they also need to have decent security to prevent a hacker from stealing their data.
|
||||
A typical person would have several of these threats in their threat model. Some of these threats may weigh more than others. For example, a software developer would have a hacker stealing their source code, signing keys, and secrets as their primary threat, but beyond that they would also want privacy from the websites they visit and so on. Likewise, an average Joe may have their primary threat as mass surveillance and service providers, but beyond that they also need to have decent security to prevent a hacker from stealing their data.
|
||||
|
||||
For whistleblowers, the threat model is much more extreme. Beyond what is mentioned above, they also need anonymity. Beyond just hiding what they do, what data they have, not getting hacked by hackers or governments, they also have to hide who they are.
|
||||
|
||||
@ -52,7 +52,7 @@ You can be tracked across websites and services using some form of identifiers.
|
||||
|
||||
Your goals should be to segregate your online identities from each other, to blend in with other people, and simply to avoid giving out identifying information to anyone as much as possible.
|
||||
|
||||
Instead of relying on privacy policies (which are promises that could be violated), try to obfuscate your information in such a way that it is very difficult for different providers to correlate data with each other and build a profile on you. This could come in the form of using encryption tools like Cryptomator prior to uploading your data to cloud services, using prepaid cards or cryptocurrency to protect your credit/debit card information, using a VPN to hide your IP address from websites and services on the internet, etc. The privacy policy should only be relied upon as a last resort, when you have exhausted all of your option for true privacy and need to put complete trust in your service provider.
|
||||
Instead of relying on privacy policies (which are promises that could be violated), try to obfuscate your information in such a way that it is very difficult for different providers to correlate data with each other and build a profile on you. This could come in the form of using encryption tools like Cryptomator prior to uploading your data to cloud services, using prepaid cards or cryptocurrency to protect your credit/debit card information, using a VPN to hide your IP address from websites and services on the internet, etc. A privacy policy should only be relied upon as a last resort, when you have exhausted all of your options for true privacy and need to put complete trust in your service provider.
|
||||
|
||||
Bear in mind that companies can hide their ownership or share your information with data brokers, even if they are not in the advertising business. Thus, it makes little sense to solely focus on the "ad-tech" industry as a threat in your threat model. Rather, it makes a lot more sense to protect yourself from service providers as a whole, and any kind of corporate surveillance threat that most people are concerned about will be thwarted along with the rest.
|
||||
|
||||
@ -95,4 +95,4 @@ As discussed, focusing solely on advertising networks and relying solely on priv
|
||||
|
||||
You should also keep in mind that [badness enumeration does not work, cannot work, has never worked, and will never work](/knowledge/badness-enumeration/). While things like ad blockers and antiviruses may help block the low hanging fruits, they can never fully protect you from the threat. On the other hand, they often increase your attack surface and are not worth the security sacrifice. At best, they are merely convenience tools and should not be thought of as part of a defense strategy.
|
||||
|
||||
Another thing to keep in mind is that open-source software is not automatically private or secure. Malicious code can be sneaked into the package by the developer of the project, contributors, library developers or the person who compiles the code. Beyond that, sometimes, a piece of open-source software may have worse security properties than its proprietary counterpart. An example of this would be traditional Linux desktops lacking verified boot, system integrity protection, or a full system access control for apps when compared to macOS. When doing threat modeling, it is vital that you evaluate the privacy and security properties of each piece of software being used, rather than just blindly trusting it because it is open-source.
|
||||
Another thing to keep in mind is that open-source software is not automatically private or secure. Malicious code can be sneaked into a package by the developer of a project, contributors, library developers or the person who compiles the code. Beyond that, sometimes, a piece of open-source software may have worse security properties than its proprietary counterpart. An example of this would be traditional Linux desktops lacking verified boot, system integrity protection, or a full system access control for apps when compared to macOS. When doing threat modeling, it is vital that you evaluate the privacy and security properties of each piece of software being used, rather than just blindly trusting it because it is open-source.
|
||||
|
Loading…
Reference in New Issue
Block a user